Chapter 6 | Learning 185 # **Chapter 6** # Learning Figure 6.1 Loggerhead sea turtle hatchlings are born knowing how to find the ocean and how to swim. Unlike the sea turtle, humans must learn how to swim (and surf). (credit "turtle": modification of work by Becky Skiba, USFWS; credit "surfer": modification of work by Mike Baird) #### **Chapter Outline** 6.1 What Is Learning? 6.2 Classical Conditioning 6.3 Operant Conditioning 6.4 Observational Learning (Modeling) ### Introduction The summer sun shines brightly on a deserted stretch of beach. Suddenly, a tiny grey head emerges from the sand, then another and another. Soon the beach is teeming with loggerhead sea turtle hatchlings (Figure 6.1). Although only minutes old, the hatchlings know exactly what to do. Their flippers are not very efficient for moving across the hot sand, yet they continue onward, instinctively. Some are quickly snapped up by gulls circling overhead and others become lunch for hungry ghost crabs that dart out of their holes. Despite these dangers, the hatchlings are driven to leave the safety of their nest and find the ocean. Not far down this same beach, Ben and his son, Julian, paddle out into the ocean on surfboards. A wave approaches. Julian crouches on his board, then jumps up and rides the wave for a few seconds before losing his balance. He emerges from the water in time to watch his father ride the face of the wave. Unlike baby sea turtles, which know how to find the ocean and swim with no help from their parents, we are not born knowing how to swim (or surf). Yet we humans pride ourselves on our ability to learn. In fact, over thousands of years and across cultures, we have created institutions devoted entirely to learning. But have you ever asked yourself how exactly it is that we learn? What processes are at work as we come to know what we know? This chapter focuses on the primary ways in which learning occurs. 186 Chapter 6 Learning ## **6.1 What Is Learning?** #### **Learning Objectives** By the end of this section, you will be able to: - Explain how learned behaviors are different from instincts and reflexes - · Define learning - Recognize and define three basic forms of learning—classical conditioning, operant conditioning, and observational learning Birds build nests and migrate as winter approaches. Infants suckle at their mother's breast. Dogs shake water off wet fur. Salmon swim upstream to spawn, and spiders spin intricate webs. What do these seemingly unrelated behaviors have in common? They all are *unlearned* behaviors. Both instincts and reflexes are innate behaviors that organisms are born with. **Reflexes** are a motor or neural reaction to a specific stimulus in the environment. They tend to be simpler than instincts, involve the activity of specific body parts and systems (e.g., the knee-jerk reflex and the contraction of the pupil in bright light), and involve more primitive centers of the central nervous system (e.g., the spinal cord and the medulla). In contrast, **instincts** are innate behaviors that are triggered by a broader range of events, such as aging and the change of seasons. They are more complex patterns of behavior, involve movement of the organism as a whole (e.g., sexual activity and migration), and involve higher brain centers. Both reflexes and instincts help an organism adapt to its environment and do not have to be learned. For example, every healthy human baby has a sucking reflex, present at birth. Babies are born knowing how to suck on a nipple, whether artificial (from a bottle) or human. Nobody teaches the baby to suck, just as no one teaches a sea turtle hatchling to move toward the ocean. Learning, like reflexes and instincts, allows an organism to adapt to its environment. But unlike instincts and reflexes, learned behaviors involve change and experience: **learning** is a relatively permanent change in behavior or knowledge that results from experience. In contrast to the innate behaviors discussed above, learning involves acquiring knowledge and skills through experience. Looking back at our surfing scenario, Julian will have to spend much more time training with his surfboard before he learns how to ride the waves like his father. Learning to surf, as well as any complex learning process (e.g., learning about the discipline of psychology), involves a complex interaction of conscious and unconscious processes. Learning has traditionally been studied in terms of its simplest components—the associations our minds automatically make between events. Our minds have a natural tendency to connect events that occur closely together or in sequence. **Associative learning** occurs when an organism makes connections between stimuli or events that occur together in the environment. You will see that associative learning is central to all three basic learning processes discussed in this chapter; classical conditioning tends to involve unconscious processes, operant conditioning tends to involve conscious processes, and observational learning adds social and cognitive layers to all the basic associative processes, both conscious and unconscious. These learning processes will be discussed in detail later in the chapter, but it is helpful to have a brief overview of each as you begin to explore how learning is understood from a psychological perspective. In classical conditioning, also known as Pavlovian conditioning, organisms learn to associate events—or stimuli—that repeatedly happen together. We experience this process throughout our daily lives. For example, you might see a flash of lightning in the sky during a storm and then hear a loud boom of thunder. The sound of the thunder naturally makes you jump (loud noises have that effect by reflex). Because lightning reliably predicts the impending boom of thunder, you may associate the two and jump when you see lightning. Psychological researchers study this associative process by focusing on what can be seen and measured—behaviors. Researchers ask if one stimulus triggers a reflex, can we train a different stimulus to trigger that same reflex? In operant conditioning, organisms learn, again, to associate events—a behavior and its consequence (reinforcement or punishment). A pleasant consequence encourages more Chapter 6 | Learning of that behavior in the future, whereas a punishment deters the behavior. Imagine you are teaching your dog, Hodor, to sit. You tell Hodor to sit, and give him a treat when he does. After repeated experiences, Hodor begins to associate the act of sitting with receiving a treat. He learns that the consequence of sitting is that he gets a doggie biscuit (Figure 6.2). Conversely, if the dog is punished when exhibiting a behavior, it becomes conditioned to avoid that behavior (e.g., receiving a small shock when crossing the boundary of an invisible electric fence). Figure 6.2 In operant conditioning, a response is associated with a consequence. This dog has learned that certain behaviors result in receiving a treat. (credit: Crystal Rolfe) Observational learning extends the effective range of both classical and operant conditioning. In contrast to classical and operant conditioning, in which learning occurs only through direct experience, observational learning is the process of watching others and then imitating what they do. A lot of learning among humans and other animals comes from observational learning. To get an idea of the extra effective range that observational learning brings, consider Ben and his son Julian from the introduction. How might observation help Julian learn to surf, as opposed to learning by trial and error alone? By watching his father, he can imitate the moves that bring success and avoid the moves that lead to failure. Can you think of something you have learned how to do after watching someone else? All of the approaches covered in this chapter are part of a particular tradition in psychology, called behaviorism, which we discuss in the next section. However, these approaches do not represent the entire study of learning. Separate traditions of learning have taken shape within different fields of psychology, such as memory and cognition, so you will find that other chapters will round out your understanding of the topic. Over time these traditions tend to converge. For example, in this chapter you will see how cognition has come to play a larger role in behaviorism, whose more extreme adherents once insisted that behaviors are triggered by the environment with no intervening thought. # **6.2 Classical Conditioning** #### **Learning Objectives** By the end of this section, you will be able to: - Explain how classical conditioning occurs - Summarize the processes of acquisition, extinction, spontaneous recovery, generalization, and discrimination Does the name Ivan Pavlov ring a bell? Even if you are new to the study of psychology, chances are that you have heard of Pavlov and his famous dogs.